Basic Geometrical Ideas for Class 6

Table of Content

Basic geometric ideas refer to the fundamental concepts and principles in geometry. This chapter provides the foundation for understanding and working with geometric shapes, figures and their properties.

  • Triangle
  • Classification of Triangles on the Basis of their Sides
  • Classification of Triangles on the Basis of their Angles
  • Quadrilaterals
  • Types of Quadrilaterals and their Properties
  • Circles
  • Triangle

    A triangle is a fundamental geometric shape that has three sides, three vertices and three angles.

    A, B and C are three vertices and ?1, ?2 and ?3 are the three angles of the given triangle.

    Triangle ABC with labeled sides.

    Angle Sum Property of a Triangle

    The Angle Sum Property of a Triangle states that the sum of the angles of a triangle is 180°.

    In a triangle with vertices A, B and C the sum of its three angles always equals 180°.

    ∠A + ∠B + ∠C = 180°

    Angle Sum Property of Triangle

    Exterior angle: The measure of the exterior angle of a triangle is equal to the sum of the measure of the two interior angles that are opposite to it.

    Triangle Exterior Angle Theorem Diagram | CREST Olympiads

    Classification of Triangles on the Basis of their Sides

    There are three types of triangles based on the length of their sides are as follows:

    Types of Triangles Based on Sides

    Classification of Triangles on the Basis of their Angles 

    There are three types of triangles based on the measure of their angles which are as follows:

    Types of Triangles Based on Angles

    Congruent Triangles

    Congruent triangles are defined as triangles where each angle in one triangle is identical to the corresponding angle in the other triangle and each side in one triangle is equivalent in length to the corresponding side in the other triangle.

    Congruent Triangles - Geometry Concepts

    Quadrilaterals

    A quadrilateral is a closed geometric shape formed by four line segments. It has four sides, four angles and four vertices. Types of quadrilaterals are shown as:

    Types of Quadrilaterals Diagram | CREST Olympiads

    Angle Sum Property of a Quadrilateral

    The sum of the angles in a quadrilateral always amounts to 360° which is referred to as the angle sum property of a quadrilateral.

    ∠ A + ∠ B + ∠ C + ∠ D = 360°

    Quadrilateral Angle Sum Property Diagram

    Adjacent and Opposite Sides

    In a quadrilateral, there are two types of side relationships:

    Adjacent and Opposite Sides in Quadrilateral

    1. Adjacent Sides: Adjacent sides are two sides that share a common endpoint or vertex. They are like neighbours. In the given quadrilateral ABCD, the adjacent side pairs are:

    → AB and BC
    → BC and CD
    → CD and DA
    → DA and AB

    Opposite Sides: Opposite sides are pairs of sides that do not share a common endpoint or vertex. They are situated on opposite ends of the quadrilateral. In the given quadrilateral ABCD, the opposite side pairs are:

    → AB and DC
    → AD and BC

    Convex and Concave Quadrilaterals

    A convex quadrilateral is a quadrilateral when all of its angles are smaller than 180°.

    Convex quadrilateral diagram illustration.

    A concave quadrilateral is a quadrilateral if it has at least one angle exceeding 180°.

    Concave quadrilateral diagram illustration.

    Types of Quadrilaterals and their Properties

    Types of Quadrilaterals and Properties

    Circles

    A circle is formed by the set of all points within a plane that are equidistant from a fixed central point. This central point is known as the centre of the circle and the uniform distance from the centre to any point on the circle is referred to as the radius.

    Circle with Center and Radius Diagram

    Circumference of a circle: The measurement of the outer boundary of a circle is called its circumference.

    Circumference of a Circle Formula | CREST Olympiads

    Where,

    Pi Representation: 22/7 or 3.14

    r  → radius of the circle

    Chord: A chord in a circle is a line segment that connects any two points along the circumference of a circle. AB is a chord in the given figure.

    Chord of a Circle Diagram

    Diameter: The diameter of a circle is a special chord that passes through the centre of the circle. The diameter is the largest chord. It is exactly twice the length of the radius.

    Diameter = 2 × Radius And Radius = Diameter/2

    PQ is a diameter and OP is a radius which is shown in the given figure.

    Circle Radius and Diameter Diagram

    Secant: A secant of a circle is a line that intersects the circle and touches it at two distinct points. AB is a secant in the given figure.

    Circle Secant Line Geometry Diagram

    Arc: An arc of a circle refers to a portion of the circumference of a circle.

    AB is an arc of a circle which is shown in the figure.

    Circle with Arcs and Center Point

    Sector: A sector of a circle is the area enclosed by an arc and two radii that connect the arc's endpoints to the circle's centre.

    Circle Sectors: Major and Minor Sections

    Segment: When a chord of a circle divides the circular region into two parts, each of these parts is referred to as a segment of the circle.

    Circle Major and Minor Segments Diagram

    Semicircle: A semicircle is formed when the diameter of a circle divides it into two equal parts. Each of these equal parts is referred to as a semicircle.

    Diagram of a Circle and Diameter

    Concentric Circles: Concentric circles are circles that share the same centre point but have varying radii.

    Concentric Circles Geometry Diagram

    Example 1: What is the value of angle q in the given figure?

    Isosceles Triangle Exterior Angle Theorem

    a) 34°
    b) 44°
    c) 54°
    d) 64°

    Answer: c) 54°

    Explanation: Let the equal angle be p, shown as:

    Triangle and Exterior Angle Theorem Diagram

    p + 117° = 180° (Linear property of angles)

    ⇒ p = 180°− 117°
    ⇒ p = 63°

    Sum of the measure of the two interior angles that are opposite to it is equal to the exterior angle of a triangle. 

    ⇒ p + q = 117°
    ⇒ 63° + q = 117°
    ⇒ q = 117° − 63° 
    ⇒ q = 54°

    Example 2: What are the values of unknown angles?

    Quadrilateral Angle Calculation with Variables

    a) x° = 45°; y° = 85°
    b) x° = 45°; y° = 95°
    c) x° = 85°; y° = 45°
    d) x° = 95°; y° = 45°

    Answer: b)  x° = 45°; y° = 95°

    Explanation: ABCD is a quadrilateral. ABD and BCD are triangles.

    Angle Calculation in Quadrilateral ABCD

    Sum of all angles of a triangle is 180°.

    In triangle ABD,

    55° + 80° + x° = 180° (Sum of its three angles in a triangle is 180°)

    ⇒ 135° + x° = 180°
    ⇒ x° = 180° − 135°
    ⇒ x° = 45°

    In triangle BCD, 

    40° + 45° + y° = 180° (Sum of its three angles in a triangle is 180°)
    ⇒ 85° + y° = 180°
    ⇒ y° = 180° − 85°
    ⇒ y° = 95°

    Quick Video Recap

    In this section, you will find interesting and well-explained topic-wise video summary of the topic, perfect for quick revision before your Olympiad exams.

    YouTube Video
    ×

    Share Your Feedback

    CREST Olympiads has launched this initiative to provide free reading and practice material. In order to make this content more useful, we solicit your feedback.

    Do share improvements at info@crestolympiads.com. Please mention the URL of the page and topic name with improvements needed. You may include screenshots, URLs of other sites, etc. which can help our Subject Experts to understand your suggestions easily.

    Maths Related Topics for Class 6

    Maths Related Worksheets for Class 6

    Other Subjects for Class 6

    70%