

# **Topic Triangles and Its Properties**









## **Worksheet on Triangles and Its Properties**

1. What is the sum of exterior angles of the triangle ABC?



- a. 180°
- b. 270°
- c. 300°
- d. 360°

2. Which of the following conditions holds true for  $\triangle$ BAT if line segment AQ is the bisector of  $\angle$ A and line segment AP is perpendicular to line segment BT?



- a. ∠PAQ = ∠ABT ∠ATB
- b.  $\angle PAQ = \frac{1}{2} (\angle ABT \angle ATB)$
- c.  $\angle PAQ = \frac{1}{3} (\angle ABT \angle ATB)$
- d.  $\angle PAQ = \frac{1}{4} (\angle ABT \angle ATB)$
- 3. Which of the following conditions is true for the quadrilateral ABCD?



- a. DC + DA + BA + BC > 2(CA + BD)
- b. DC + DA + BA + BC < 2(CA + BD)
- c. DC + DA + BA + BC > 3(CA + BD)
- d. DC + DA + BA + BC < CA BD
- 4. In the right-angled triangle PQR where ∠P is the right angle. The midpoint of the hypotenuse QR is denoted as T. A line segment is drawn from point P to the midpoint T and extended to points S such that PT is equal to TS. Point S is then connected to point R as shown in the figure. The following statements are demonstrated:
  - I. Triangles PTQ and RTS are congruent.
  - II. Triangles QPR and SRP are congruent.
  - III. ∠PTR is equal to 104° if ∠TRP is 33°.
  - IV. The length of PT is greater than half of the length of SP.
  - V. The length of PT is equal to half of the length of QR.



Which of the following statements is NOT correct?

- a. Only (ii) and (iii).
- b. Only (ii), (iii) and (iv).
- c. Only (iii) and (iv).
- d. Only (iii), (iv)and (v).
- 5. In  $\triangle$ XYZ, the length of XY is (p q), the length of ZY is  $\sqrt{(p^2 + q^2)}$ . What is the value of the angle  $\angle$ ZYX?

Olympiads

- a. 60°
- b. 75°
- c. 90°
- d. 105°

### **Answer Key**

#### **1.** d - 360°

**Explanation:** Let interior angles be  $x^\circ$ ,  $y^\circ$  and  $z^\circ$ , respectively. Then, exterior angles are  $(180 - x)^\circ$ ,  $(180 - y)^\circ$  and  $(180 - z)^\circ$  respectively. The labelled diagram is shown as



Sum of interior angles of  $\triangle ABC = x^{\circ} + y^{\circ} + z^{\circ} = 180^{\circ}$ Sum of exterior angles of  $\triangle ABC = (180 - x)^{\circ} + (180 - y)^{\circ} + (180 - z)^{\circ}$   $= 180^{\circ} - x^{\circ} + 180^{\circ} - y^{\circ} + 180^{\circ} - z^{\circ}$   $= 180^{\circ} + 180^{\circ} + 180^{\circ} - (x^{\circ} + y^{\circ} + z^{\circ})$   $= 180^{\circ} + 180^{\circ} + 180^{\circ} - 180^{\circ}$  $= 360^{\circ}$ 

2. 
$$b - \angle PAQ = \frac{1}{2} (\angle ABT - \angle ATB)$$

**Explanation**: In  $\triangle$ BAT,

 $\angle TAQ = \angle BAQ$  [Line segment AQ is the bisector of  $\angle A$ .]

 $\angle$ APB =  $\angle$ APQ = 90° [Line segment AP is perpendicular to line segment BT.] In  $\triangle$ BAQ,

 $\angle$ AQT =  $\angle$ BAQ +  $\angle$ ABQ [Exterior angle is the sum of two opposite interior angle.] In  $\triangle$ ATQ,

Olympiads

 $\angle TAQ + \angle ATQ + \angle AQT = 180^{\circ}$  [Sum of interior angle of a triangle is 180°.]

$$\Rightarrow$$
  $\angle$ TAQ +  $\angle$ ATQ + ( $\angle$ BAQ +  $\angle$ ABQ) = 180° [Put  $\angle$ AQT =  $\angle$ BAQ +  $\angle$ B]

$$\Rightarrow$$
  $\angle$ TAQ +  $\angle$ ATQ + ( $\angle$ TAQ +  $\angle$ ABQ) = 180° [Put  $\angle$ TAQ =  $\angle$ BAQ]

- $\Rightarrow$  2 $\angle$ TAQ +  $\angle$ ATQ +  $\angle$ ABQ = 180°
- ⇒ 2∠TAQ = 180° ∠ATQ ∠ABQ
- $\Rightarrow \angle TAQ = \frac{1}{2} (180^{\circ} \angle ATQ \angle ABQ)$
- $\therefore \angle TAQ = 90^{\circ} \frac{1}{2} \angle ATQ \frac{1}{2} \angle ABQ \dots (i)$

 $\angle AQP = \angle TAQ + \angle ATQ$  [Exterior angle is the sum of two opposite interior angle.] In  $\triangle APQ$ ,

 $\angle PAQ + \angle AQP + \angle APQ = 180^{\circ}$  [Sum of interior angle of a triangle is 180°.]

- $\Rightarrow$   $\angle$ PAQ +  $\angle$ AQP + 90° = 180° [Put  $\angle$ APQ = 90°]
- $\Rightarrow \angle PAQ + \angle AQP = 90^{\circ}$
- $\Rightarrow$   $\angle$ PAQ + ( $\angle$ TAQ +  $\angle$ ATQ) = 90° [Put  $\angle$ AQP =  $\angle$ TAQ +  $\angle$ ATQ]
- $\Rightarrow \angle PAQ + 90^{\circ} \frac{1}{2} \angle ATQ \frac{1}{2} \angle ABQ + \angle ATQ = 90^{\circ} [From (i)]$

```
\Rightarrow \angle PAQ = 90^{\circ} - 90^{\circ} + \frac{1}{2} \angle ATQ + \frac{1}{2} \angle ABQ - \angle ATQ
\Rightarrow \anglePAQ = \frac{1}{2} \angleABQ + \frac{1}{2} \angleATQ - \angleATQ
\Rightarrow \anglePAQ = \frac{1}{2} \angleABQ - \frac{1}{2} \angleATQ
∠ABQ and ∠ABT are at the same angle.
∠ATQ and ∠ATB are at the same angle.
```

∴ Hence,  $\angle PAQ = \frac{1}{2} (\angle ABT - \angle ATB)$ 

3. b - DC + DA + BA + BC < 2(CA + BD)

**Explanation:** The sum of any two sides of a triangle is always greater than the third side.

umpiads

Therefore, the third side of a triangle is less than the sum of the other two sides.

```
In \triangle AOB, BA < OA + OB
                           ....(I)
In \triangleBOC, BC < OB + OC
                            ....(II)
In \triangleCOD, DC < OC + OD
                            ....(III)
In \triangleDOA, DA < OD + OA
                            ....(IV)
```

Adding (I), (II), (III) and (IV).

$$\Rightarrow$$
 DC + DA + BA + BC < 2(OA + OC + OB + OD)

$$\therefore$$
 DC + DA + BA + BC < 2(CA + BD) [CA = OA + OC and BD = OB + OD]

4. c - Only (iii) and (iv).

Explanation: T is the midpoint of QR and PT = TS.

The statements are as follows:

(i) In  $\triangle$ PTQ and  $\triangle$ RTS,

[T is the midpoint of QR] QT = RT[Vertically Opposite Angle]  $\angle PTQ = \angle PTQ$ 

PT = TS [Given]

[By SAS Criterion]  $\triangle PTQ \cong \triangle RTS$ 

Hence, statement (i) is correct.

(ii) In  $\triangle$ QPR and  $\triangle$ SRP.

 $\triangle PTQ \cong \triangle RTS$ [By SAS Criterion]

 $\triangle PTQ + \triangle PTR \cong \triangle RTS + \triangle PTR$ [Adding △PTR both sides]

 $\triangle QPR \cong \triangle SRP$  $[\triangle PTR \text{ is common to both } \triangle QPR \text{ and } \triangle SRP]$ 

Hence, statement (ii) is correct.

(iii) In △PTR,

 $QR = SP [By CPCT, \triangle QPR \cong \triangle SRP]$ 

 $\Rightarrow$  QT + RT = PT + TS [QR = QT + TR and SP = PT + TS]

 $\Rightarrow$  RT + RT = PT + PT [Put QT = RT and PT = TS]

 $\Rightarrow$  2RT = 2PT

⇒ RT = PT

Angles opposite sides of equal length in a triangle are equal.

Hence, statement (iii) is not correct.

(iv) In 
$$\triangle$$
PSR,  
SP = PT + TS  
 $\Rightarrow$  SP = PT + PT [Given: PT = TS]  
 $\Rightarrow$  SP = 2PT  
 $\Rightarrow$  PT =  $\frac{1}{2}$  SP

: The length of PT is equal to half of the length of SP.

Hence, statement (iv) is not correct.

(v) In 
$$\triangle PQR$$
 and  $\triangle PSR$ ,

$$\Rightarrow$$
 PT =  $\frac{1}{2}$  PS [As proved above in statement (iv).]

$$\Rightarrow$$
 PT = ½ QR [QR = SP, By CPCT,  $\triangle$ QPR  $\cong$   $\triangle$ SRP]

∴ The length of PT is equal to half of the length of QR.

Hence, statement (v) is correct.

: Only statements (i), (ii) and (v) are correct. Only statements (iii) and (iv) are incorrect.

Olympiads

**5.**  $c - 90^{\circ}$ 

#### **Explanation:** In $\triangle XYZ$ ,



$$XY^2 + ZY^2 = (p - q)^2 + (\sqrt{2pq})^2$$
  
 $\Rightarrow XY^2 + ZY^2 = p^2 + q^2 - 2pq + 2pq$   
 $\Rightarrow XY^2 + ZY^2 = p^2 + q^2$  .....(i)

$$ZX^2 = [\sqrt{(p^2 + q^2)}]^2$$
  
 $\Rightarrow ZX^2 = p^2 + q^2$  .....(ii)

From (i) and (ii), ZX<sup>2</sup> = XY<sup>2</sup> + ZY<sup>2</sup> Which satisfies Pythagoras' Theorem. ∴ Hence, ∠ZYX = 90°.

## More Questions Coming Soon – Keep Learning!



# Difference between Ordinary & Extra-Ordinary is that "Little Extra"

**Discover Our Ultimate Prep Kits!** 

### **Buy Previous Years Papers**

- 1. Login at www.crestolympiads.com/login
- 2. Go to Dashboard -> Additional Practice -> Buy



https://www.crestolympiads.com/olympiadbooks

## **Buy Additional Practice**

- 1. Login at www.crestolympiads.com/login
- 2. After login, go to Dashboard -> Additional Practice -> Buy













