#CRESTInnovator

0

Olympiads

CREST Mathematics Olympiad (CMO) Worksheet for Class 10

Topic Statistics

@crestolympiads 🖄 info@crestolympiads.com 🕓 +91-98182-94134

1. Consider the given frequency polygon representing the marks obtained by students of a class in a test.

What percentage of students scored more than 40 but less than 90?

- a. 33.75%
- b. 33.67%
- c. 33.5%
- d. 33.33%

2. Consider the given ogive or cumulative frequency curve representing the daily income of 50 workers of a factory.

What is the percentage of workers earning less than \$140?

- a. 52%
- b. 55%
- c. 55%
- d. 51%

3. Consider the given data:

X	5	10	15	20	25	30	35
f	11	20	14	10	8	15	7

What is the mean of the given data using the direct method?

- a. 18.357
- b. 18.353
- c. 18.358
- d. 18.355

4. The weights of 35 students in a class are given below.

Weight (in kg)	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90
No. of students	5	14	9	4	3

What is the median weight of the students?

- a. 58.93 kg
- b. 58.98 kg
- c. 58.95 kg
- d. 58.97 kg
- 5. The weights of 50 oranges were recorded as given below. What is the mean weight using the standard deviation method?

Weight (in gm)	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80	80 - 85	85 - 90
No. of oranges	11	5	8	10	9	5	2

ES | Olympiads

- a. 69.7 gm
- b. 69.8 gm
- c. 69.5 gm
- d. 69.9 gm

Answer Key

1. d - 33.33%

С 10 κ 8 F Number of candidates — 6 в D 4 G 2 L - 10 J 10 20 30 40 50 60 70 80 90 100 Marks -

Explanation: We are given the following frequency polygon

A frequency polygon is a graph that represents the frequency distribution of a dataset.

From the frequency polygon, we get the following frequency distribution table:

Marks	Number of Students
0 - 10	5
10 - 20	10
20 - 30	4
30 - 40	6
40 - 50	7
50 - 60	3
60 - 70	2
70 - 80	2
80 - 90	3
90 - 100	9

Total number of students = 5 + 10 + 4 + 6 + 7 + 3 + 2 + 2 + 3 + 9= 51No. of students scoring marks more than 40 but less than 90 = 7 + 3 + 2 + 2 + 3= 17

Percentage of students scoring marks more than 40 but less than 90 = [(No. of students scoring marks more than 40 but less than 90) / (Total no. of students)] × 100= (17 / 51) × 100

 $= (17/31) \times 1$ = 100 / 3 = 33.33%

2. c – 50%

Explanation: We are given the following of give

An ogive is a graphical representation that displays the cumulative frequencies of a dataset.

From the ogive, we get the following frequency distribution table:

Daily Income	Cumulative
(in \$)	Frequency
Less than 120	12
Less than 140	25
Less than 160	33
Less than 180	40
Less than 200	50
Daily Income	Number of
Daily Income (in \$)	Number of Workers
Daily Income (in \$) 100 - 120	Number of Workers 12
Daily Income (in \$) 100 - 120 120 - 140	Number of Workers 12 13
Daily Income (in \$) 100 - 120 120 - 140 140 - 160	Number of Workers12138
Daily Income (in \$) 100 - 120 120 - 140 140 - 160 160 - 180	Number of Workers121387

Total number of workers = 50 No. of workers earning less than \$140 = 25

Percentage of workers earning less than \$140 = [(No. of workers earning less than \$140) / (Total no. of workers)] × 100

3. b - 18.353

Explanation: Steps for finding the mean using the direct method are:

a. Make a frequency table using the following three columns:

(i) Enter the variate (x_i) values in the first column from the left.

(ii) Write the matching frequency (f_i) for each variate in column (a) in the second column from the left.

(iii) Enter each value of $f_i x_i$, or the product of each x and its frequency (f), in the third column.

b. To obtain $\sum f_i$ (the total of all the frequencies), add each entry in the second column.

c. To obtain $\sum f_i x_i$, add each entry in the third column.

d. Required mean = $\Sigma f_i x_i \Sigma f_i$

Thus,

Xi	f i (frequency)	f _i x _i
5	11	55
10	20	200
15	14	210
20	10	200
25	8	200
30	15	450
35	7	245
Σfi = 85	$\Sigma f_i x_i = 1560$	

Now,
Mean =
$$\frac{\Sigma fixi}{\Sigma fi}$$

= 1560 / 85
= 312 / 17
= 18.353

4. a - 58.93 kg

Explanation: The frequency distribution table with the given cumulative frequencies becomes:

Class Interval	Frequency	Cumulative frequency
40 - 50	5	5
50 - 60	14	19
60 - 70	9	28
70 - 80	4	32
80 - 90	3	35

We know that

Median = I +
$$\frac{\frac{n}{2} - cf}{f} \times h$$

n = 35

Here, \rightarrow n / 2 = 35 / 2

um piads This observation lies in the class interval 50 - 60.

- \rightarrow I (lower limit) = 50
- \rightarrow h (class size) = 10
- \rightarrow f (frequency of the median class) = 14

$$\rightarrow$$
 cf (cumulative frequency of the preceding class, i.e. 40 - 50) = 5

- \rightarrow Median = 50 + ^{17.5-5}/₁₄ × 10
 - $= 50 + \frac{12.5}{14} \times 10$ $= 50 + \frac{125}{14}$ = 50 + 8.93
 - = 58.93 kg

Explanation: Steps for finding mean using the step deviation method:

a. Create a five-column frequency table.

(i) Enter the variate (x_i) values in the first column from the left.

(ii) Record the frequency (f_i) of each variate in column (a) in the second column from the left.

b. Select a number, 'A' (ideally from the variate 'x_i' values that are provided in the first column). In this case, 'A' is referred to as the assumed mean.

To obtain the deviation 'd_i,' subtract the assumed mean 'A' from each value of variate 'x' in the first column.

Thus, deviation $(d_i) = x_i - A$

In the third column, record the values of each deviation (d = x - A) together with the matching frequencies.

c. Divide each value of d_i by h to get $d_i / h = (x_i - A) / h$. Denote the values that were obtained by t_i and write in the fourth column.

d. To obtain the values of $f_i t_i$, multiply the frequencies in the second column by the matching values of t_i in the fourth column. Then, record each value of $f_i t_i$ in the fifth column.

e. To find the value of $\sum f_i t_i$, add up all the numbers in the fifth column. To obtain the value of $\sum f_i$, add all the numbers in the second column.

f. The following formula gives the required mean using the step-deviation method:

$$Mean = A + \left(\frac{\sum fiti}{\sum fi} \times h\right)$$

Where

A is the assumed mean.

 $t_i = (x_i - A) / h$ h = class size Thus, Let the assumed mean (A) be 72.5 h = 5

Weight	No. of	Mid-value	d _i = x _i – A	$t_i = (x_i - A) /$	fiti		
	oranges (f _i)	(X _i)	= x _i - 72.5	h			
55 - 60	11	57.5	-15	-3	-33		
60 - 65	5	62.5	-10	-2	-10		
65 - 70	8	67.5	-5	-1	-8		
70 - 75	10	72.5	0	0	0		
75 - 80	9	77.5	5 iad	1	9		
80 - 85	5	82.5 🕖	10	2	10		
85 - 90	2	87.5	15	3	6		
∑f _i = 50		∑f _i t _i = − 26					

Mean = A +
$$\left(\frac{\sum fiti}{\sum fi} \times h\right)$$

= 72.5 + $\left(\frac{-26}{50} \times 5\right)$
= 72.5 + $\left(\frac{-26}{50}\right)$
= 72.5 - 2.6
= 69.9 gm

More Questions Coming Soon – Keep Learning!

Difference between Ordinary & Extra-Ordinary is that "Little Extra"

