

CREST Science Olympiad (CSO) Worksheet for Class 10

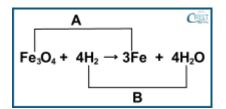
Торіс

Chemical Reaction and Equations

🛿 🧿 @crestolympiads

🖄 info@crestolympiads.com

🕓 +91-98182-94134


Worksheet on Chemical Reaction and Equations

- 1. Which of the following statements is correct based on the experiment where a student took zinc sulphate and copper sulphate in two separate test tubes and then dipped an iron nail in both solutions, observing changes in both test tubes?
 - a. The iron nail will show visible changes in the copper sulphate solution, but not in the zinc sulphate solution.
 - b. The iron nail will show visible changes in the zinc sulphate solution, but not in the copper sulphate solution.
 - c. The iron nail will show visible changes in both the copper sulphate solution and the zinc sulphate solution.
 - d. The iron nail will not show any visible changes in either the copper sulphate solution or the zinc sulphate solution.
- 2. Balance the given chemical equation and select the accurate sum of coefficients for the products:

 $KCIO_3 \rightarrow KCI + O_2$

- a. 3
- b. 7
- c. 5
- d. 4
- 3. Consider the following equations and choose the correct option:
 - I. $2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ um piads
 - II. $ZnO + C \rightarrow + Zn + CO$
 - III. $Pb(s) + CuCl_2(aq) \rightarrow PbCl_2(aq) + Cu(s)$
 - a. I: Redox Reaction, II: Synthesis Reaction, III: Double Displacement Reaction
 - b. I: Decomposition Reaction, II: Displacement Reaction, III: Double Displacement Reaction
 - c. I: Redox Reaction, II: Displacement Reaction, III: Double Displacement Reaction
 - d. I: Decomposition Reaction, II: Redox Reaction, III: Displacement Reaction

4. Identify A, B, the reducing agent and the oxidising agent in the following reaction.

- a. A: Reduction, B: Oxidation, Fe₃: Oxidising Agent, H₂O: Reducing Agent
- b. A: Reduction, B: Oxidation, Fe₃O₄: Oxidising Agent, H₂: Reducing Agent
- c. A: Oxidation, B: Reduction, Fe3: Reducing Agent, H₂: Oxidising Agent
- d. A: Oxidation, B: Reduction, Fe₃O₄: Reducing Agent, H₂O: Oxidising Agent

5. You want to demonstrate a double displacement reaction that produces a precipitate. Which combination of reactants would most likely result in the formation of a solid precipitate?

- a. Sodium chloride (NaCl) and hydrochloric acid (HCl)
- b. Potassium nitrate (KNO_3) and sulfuric acid (H_2SO_4)
- c. Silver nitrate (AgNO₃) and sodium chloride (NaCl)
- d. Calcium carbonate (CaCO₃) and acetic acid (CH₃COOH)

Answer Key

- a In the experiment, when an iron nail is dipped in a solution of copper sulphate (CuSO₄), a displacement reaction occurs. Copper is less reactive than iron, so iron displaces copper from the copper sulphate solution. This results in the formation of a reddish-brown coating of copper metal on the iron nail. On the other hand, when the iron nail is dipped in a solution of zinc sulphate (ZnSO₄), no displacement reaction occurs, as zinc is more reactive than iron. Therefore, the iron nail will not show any visible changes in the zinc sulphate solution.
- **2.** c To balance the equation, you need to put a coefficient of 2 in front of KCl and 3 in front of O_2 to ensure that the number of atoms is equal on both sides. This results in the balanced equation: $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$, where the sum of coefficients for the products is 2 + 3 = 5.

3. d -

I. FeSO₄(s) \rightarrow Fe₂O₃(s) + SO₂(g) + SO₃(g) - This is a decomposition reaction as a single compound breaks down into multiple simpler substances. II. ZnO + C \rightarrow + Zn + CO - This is a redox reaction as zinc oxide (ZnO) is reduced to zinc (Zn) by carbon (C). III. Pb(s) + CuCl₂(aq) \rightarrow PbCl₂(aq) + Cu(s) - This is a displacement reaction as lead (Pb) displaces copper (Cu) from copper chloride (CuCl₂) to form lead chloride (PbCl₂) and copper metal (Cu).

- 4. b A: Reduction, B: Oxidation, Fe₃O₄: Oxidising Agent, H₂: Reducing Agent In the given reaction, Fe₃O₄ is being reduced to Fe while H₂ (hydrogen gas) is being oxidised to H₂O (water). Therefore: A: Reduction (undergoing reduction) B: Oxidation (undergoing oxidation) Fe₃O₄: Oxidising Agent (causing oxidation) H₂: Reducing Agent (causing reduction)
- **5.** c The combination that would most likely result in the formation of a solid precipitate is Silver nitrate (AgNO₃) and sodium chloride (NaCl). When silver nitrate reacts with sodium chloride, a double displacement reaction occurs, leading to the formation of silver chloride (AgCl), which is insoluble in water and appears as a white solid precipitate. This reaction is commonly known as the "silver chloride precipitation reaction."

More Questions Coming Soon – Keep Learning!

Difference between Ordinary & Extra-Ordinary is that "Little Extra"

